Home Overview Research Programs Shared Facilities News & Outreach Technology Transfer Employment About PHRI

 
Scientific Overview Research Interest Summary Principal Investigators    Yuri Bushkin, Ph.D.
   Theresa Chang, Ph.D.
   Neeraj Chauhan, Ph.D.
   Véronique Dartois, Ph.D.
   Thomas Dick, Ph.D.
   Karl Drlica, Ph.D.
   David Dubnau, Ph.D.
   Eliseo A. Eugenin, Ph.D.
   Marila Gennaro, M.D.
   Fred Kramer, Ph.D.
   Barry Kreiswirth, Ph.D.
   Min Lu, Ph.D.
   Leonard Mindich, Ph.D.
   Arkady Mustaev, Ph.D.
   Jyothi Nagajyothi, Ph.D.
   David Perlin, Ph.D.
   Abraham Pinter, Ph.D.
   Marcela Rodriguez, Ph.D.
   Jeanne Salje, Ph.D.
   Lanbo Shi, Ph.D.
   Selvakumar Subbian, Ph.D.
   Sanjay Tyagi, Ph.D.
   Christopher Vinnard, M.D.
   Chaoyang Xue, Ph.D.
   Xilin Zhao, Ph.D.

   Research Faculty
   Liang Chen, Ph.D.
   Eugenie Dubnau, Ph.D.
   Jeanette Hahn, Ph.D.
   Salvatore Marras, Ph.D.
   Yanan Zhao, Ph.D.

Emeritus Faculty Recent Publications
 
Lanbo Shi, Ph.D.

Research Summary  |  Selected Publications   |  C.V.
 

Public Health Research Institute Center and
at the International Center for Public Health
New Jersey Medical School - Rutgers, The State University of New Jersey
225 Warren Street
Newark, New Jersey 07103, USA

Phone: (973) 854-3322
e-mail: shila@njms.rutgers.edu



Research Summary

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), has become world’s leading killer from infectious diseases, with an estimated 1.8 million deaths each year. TB results from complex host-pathogen interactions and its pathological hallmark is the formation of granulomas. After successful pulmonary infection, Mtb survives and proliferates within macrophages until the expression of a delayed adaptive immunity with the formation of granulomas, which eventually controls growth of the pathogen. While granuloma is able to localize and contain Mtb by concentrating the immune response, recent studies also indicate that Mtb has evolved the ability not only to adapt to the hostile environment but also to exacerbate the pathological manifestations in granulomas, ultimately resulting in progression of the infection and bacillary dissemination.

Dr. Shi’s research is focused on studying the interrelationship between bioenergetic pathways of host immune cells and their specific immune functions in TB. Recent findings from his group indicate that host immune cells switch to utilize aerobic glycolysis (aka, the Warburg effect in cancer cells) as carbon and energy source in response to Mtb infection, and this metabolic reprogramming is associated with induction of the Hypoxia Inducible Factor 1 (HIF-1), a master transcription regulator of genes involved in multiple cellular adaptation processes including energy metabolism. Increasing evidence indicates that the Warburg effect is required for immune cells to mount an efficient antimicrobial and pro-inflammatory response against Mtb, and that the pathogen modulates the metabolic reprogramming of host immune cells as mechanism of pathogenicity. Using multiple approaches including protein immunofluorescence and RNA-FISH his group is dissecting the metabolic determinants of immune cell functions in association with different infection outcome. Elucidation of host immunometabolism in TB is expected to illuminate avenues for the development of host-directed therapies (HDT) to enhance the antimicrobial functions of immune cells by “tailoring” their metabolism.

Dr. Shi is also interested in understanding mechanisms of Mtb persistence focusing on bacterial metabolism and physiology. He characterized several important adaptations of Mtb in response to host adaptive immunity including induction of the DosR dormancy regulon, shift of the respiratory pathways from energy-efficient aerobic pathway to anaerobic respiration, and rerouting of carbon flux from biosynthetic precursors toward the formation of triacyltglycerol (TAG), a storage compound that serves as carbon and energy source during Mtb persistence and reactivation. Recent study of his group focuses on understanding the little-known molecular mechanism of Mtb reactivation from dormancy. Pathway and regulatory network enrichment analysis of transcriptome dynamics of the reactivating bacilli has revealed that a transcriptome reprogramming of many metabolic pathways and regulatory networks in the lag phase orchestrates the recovery of metabolic and physiological functions leading to the eventual resumption of bacterial replication. Importantly, the study has identified a number of up-regulated transcription regulons and metabolic pathways in the lag phase, underscoring potential therapeutic intervention checkpoints to prevent Mtb from reactivation.




Selected Publications


Du P, Sohaskey CD, Shi L (2016) Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence. Front Microbiol 7: 1346. PMI: 27630619

Giffin MM, Shi L, Gennaro ML, Sohaskey CD (2016) Role of Alanine Dehydrogenase of Mycobacterium tuberculosis during Recovery from Hypoxic Nonreplicating Persistence. PLoS One 11: e0155522. PMI: 27203084

Shi L, Eugenin EA, Subbian S (2016) Immunometabolism in Tuberculosis. Front Immunol 7: 150. PMI: 27148269

Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML (2015) Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep 5: 18176. PMI: 26658723

Salamon H, Bruiners N, Lakehal K, Shi L, Ravi J, Yamaguchi KD, Pine R, Gennaro ML (2014) Cutting edge: Vitamin D regulates lipid metabolism in Mycobacterium tuberculosis infection. J Immunol 193: 30-34. PMI: 24899504

Datta P, Shi L, Bibi N, Balazsi G, Gennaro ML (2011) Regulation of central metabolism genes of Mycobacterium tuberculosis by parallel feed-forward loops controlled by sigma factor E (sigma(E)). J Bacteriol 193: 1154-1160. PMI: 21193605

Shi L, Sohaskey CD, Pfeiffer C, Datta P, Parks M, McFadden J, North RJ, Gennaro ML (2010) Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol 78: 1199-1215. PMI: 21091505

Hussain S, Malik M, Shi L, Gennaro ML, Drlica K (2009) In vitro model of mycobacterial growth arrest using nitric oxide with limited air. Antimicrob Agents Chemother 53: 157-161. PMI: 18955516

Shi L, Sohaskey CD, North RJ, Gennaro ML (2008) Transcriptional characterization of the antioxidant response of Mycobacterium tuberculosis in vivo and during adaptation to hypoxia in vitro. Tuberculosis (Edinb) 88: 1-6. PMI: 17928268

Balazsi G, Heath AP, Shi L, Gennaro ML (2008) The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol 4: 225. PMI: 18985025

Singh A, Singh Y, Pine R, Shi L, Chandra R, Drlica K (2006) Protein kinase I of Mycobacterium tuberculosis: cellular localization and expression during infection of macrophage-like cells. Tuberculosis (Edinb) 86: 28-33. PMI: 16256441

Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, Mizrahi V, Gennaro ML (2005) Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A 102: 15629-15634. PMI: 16227431

Davidow A, Kanaujia GV, Shi L, Kaviar J, Guo X, Sung N, Kaplan G, Menzies D, Gennaro ML (2005) Antibody profiles characteristic of Mycobacterium tuberculosis infection state. Infect Immun 73: 6846-6851. PMI: 16177363

Shi L, North R, Gennaro ML (2004) Effect of growth state on transcription levels of genes encoding major secreted antigens of Mycobacterium tuberculosis in the mouse lung. Infect Immun 72: 2420-2424. PMI: 15039373

Shi L, Jung YJ, Tyagi S, Gennaro ML, North RJ (2003) Expression of Th1-mediated immunity in mouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci U S A 100: 241-246. PMI: 12506197

Shi L, Guttenberger M, Kottke I, Hampp R (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L.): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12: 303-311. PMI: 12466918

Lowe A, Einig W, Shi L, Hampp R (2000) Mycorrhiza Formation and Elevated CO2 Both Increase the Capacity for Sucrose Synthesis in Source Leaves of Spruce and Aspen. New Phytologist 145: 565-574. PMI: 0

Wiese C, Shi L, Heber U (1998) Oxygen Reduction in the Mealer Reaction Is Insufficient to Protect Photosystems I and II of Leaves against Photoinactivation. Physiologia Plantarum 102: 437-446. PMI: 0






C.V.


Education

Ph.D. 2000 (Mycology and Plant Physiology): University of Tuebingen, Tuebingen, Germany.


Professional experience

Visiting Research Scientist, 1996: Institute of Botany, University of Wuerzburg, Wuerzburg Germany;
Postdoctoral Fellow, 2000 – 2002: Public Health Research Institute, New York;
Research Associate, 2002 – 2007: Public Health Research Institute, New Jersey;
Assistant Professor of Medicine, 2007 – Present: Public Health Research Institute, New Jersey Medical School, Rutgers University.





 
     Copyright © 2018 All rights reserved.   PHRI at ICPH 225 Warren St. Newark, NJ 07103-3535 TEL 973 854 3100, FAX 973 854 3101