Home Overview Research Programs Shared Facilities News & Outreach Technology Transfer Employment About PHRI

Scientific Overview Research Interest Summary Principal Investigators    Yuri Bushkin, Ph.D.
   Theresa Chang, Ph.D.
   Neeraj Chauhan, Ph.D.
   Véronique Dartois, Ph.D.
   Thomas Dick, Ph.D.
   Karl Drlica, Ph.D.
   David Dubnau, Ph.D.
   Eliseo A. Eugenin, Ph.D.
   Marila Gennaro, M.D.
   Fred Kramer, Ph.D.
   Barry Kreiswirth, Ph.D.
   Min Lu, Ph.D.
   Leonard Mindich, Ph.D.
   Arkady Mustaev, Ph.D.
   Jyothi Nagajyothi, Ph.D.
   David Perlin, Ph.D.
   Abraham Pinter, Ph.D.
   Marcela Rodriguez, Ph.D.
   Jeanne Salje, Ph.D.
   Lanbo Shi, Ph.D.
   Selvakumar Subbian, Ph.D.
   Sanjay Tyagi, Ph.D.
   Christopher Vinnard, M.D.
   Chaoyang Xue, Ph.D.
   Xilin Zhao, Ph.D.

   Research Faculty
   Liang Chen, Ph.D.
   Eugenie Dubnau, Ph.D.
   Jeanette Hahn, Ph.D.
   Salvatore Marras, Ph.D.
   Yanan Zhao, Ph.D.

Emeritus Faculty Recent Publications
Chaoyang Xue, Ph.D.

Research Summary  |  Selected Publications  |  CV

Public Health Research Institute Center
New Jersey Medical School - Rutgers, The State University of New Jersey
225 Warren Street
Newark, New Jersey 07103

Phone: (973) 854-3218
Fax: (973) 854-3101
e-mail: xuech@njms.rutgers.edu

Research Summary

Cryptococcus as a model for host-pathogen interactions

Pathogens adapt to their surroundings or hosts by adjusting cell developmental processes based on changing environmental conditions. Cell surface receptors on pathogens are essential for sensing extracellular signals and controlling intracellular signal transduction pathways that regulate cell development and virulence. My lab studies the human yeast pathogen Cryptococcus neoformans, the causative agent of life-threatening cryptococcal meningitis. C. neoformans is the leading cause of fungal meningitis with over 1 million cases annually in mostly immunocompromised individuals, such as those with HIV/AIDS, organ transplants, or those who are immunocompromised by cancer chemotherapy or by other treatments. As an experimental model organism, Cryptococcus allows us to study how human fungal pathogens sense extracellular signals that are important for their virulence.

1. Functional analysis of G protein-coupled receptors (GPCRs). It is now well established that GPCR signaling is involved in a wide range of physiological processes and diseases, and this family of proteins plays a critical role in sensing extracellular signals. In fact, many proteins in this gene family have been developed as important drug targets for controlling a variety of human diseases. Our studies focus on GPCRs that sense nutrients, and how such interactions affect the regulation of downstream signal pathways, which control the virulence and cellular development of Cryptococcus.

2. Role of inositol and inositol transporters in fungal development and virulence. Inositol is both a basal structural component of cells and an important signaling molecule involved in a variety of cell developmental processes. The C. neoformans genome contains an unusually large inositol transporter gene family that has been found to be important for fungal sexual reproduction and fungal virulence. Our recent studies link fungal inositol acquisition to brain infection in animal models, which correlates with the fact that human and animal brains contain abundant free inositol. We propose that inositol plays an important role in the development of cryptococcal meningitis, the predominant and most lethal form of cryptococcosis. An understanding of how inositol is involved in fungal brain infection could have significant impact on understanding of its disease mechanism.

3. Protein ubiquitination and fungal virulence. E3 ubiquitin ligases play an essential role in regulation of many cellular processes, and are considered to be an important new drug target platform for future mechanism-driven drug discovery. We recently identified Fbp1, a key F-box protein of an SCF (Skp1, Cullin, F-box protein) E3 ubiquitin ligase complex that is essential for C. neoformans to cause disease. We are investigating how this SCFFBP1 E3 ubiquitin ligase is involved in fungal development and fungal virulence, and what are the responsible substrates. We will also extend our study to analyze other F-box proteins in Cryptococcus.

By applying a combination of genetics, biochemistry, and molecular biology, the goal of our research is to gain new insights into fungal-host interactions. The information should lead to novel drug targets, as well as better approaches for diagnosis and control of fungal diseases.

Please contact Dr. Xue (xuech@njms.rutgers.edu) directly if you are interested in joining the lab as a postdoc or PhD student.

Selected Publications

Masso-Silva J, Espinosa V, Liu TB, Wang Y, Xue C, Rivera A (2018) The F-Box Protein Fbp1 Shapes the Immunogenic Potential of Cryptococcus neoformans. MBio 9. PMI: 29317510

Liao G, Wang Y, Liu TB, Kohli G, Qian W, Shor E, Subbian S, Xue C (2018) Role of the inositol pyrophosphate multikinase Kcs1 in Cryptococcus inositol metabolism. Fungal Genet Biol 113: 42-51. PMI: 29357302

Van Dijck P, Brown NA, Goldman GH, Rutherford J, Xue C, Van Zeebroeck G (2017) Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiol Spectr 5. PMI: 28256189

Boyce KJ, Wang Y, Verma S, Shakya VPS, Xue C, Idnurm A (2017) Mismatch Repair of DNA Replication Errors Contributes to Microevolution in the Pathogenic Fungus Cryptococcus neoformans. MBio 8. PMI: 28559486

Shor E, Wang Y, Perlin DS, Xue C (2016) Cryptococcus flips its lid - membrane phospholipid asymmetry modulates antifungal drug resistance and virulence. Microbial Cell 3: 358-360. PMI:

Huang W, Liao G, Baker GM, Wang Y, Lau R, Paderu P, Perlin DS, Xue C (2016) Lipid flippase subunit Cdc50 mediates drug resistance and virulence in Cryptococcus neoformans. MBio 7: e00478-00416. PMI: 27165800

Xue C (2015) Finding the sweet spot: How human fungal pathogens acquire and turn the sugar inositol against their hosts. mBio 6: e00109-00115. PMI:

Ero R, Dimitrova VT, Chen Y, W. B, Feng S, Liu T, Wang P, Xue C, Tan SM, Gao Y-G (2015) Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans. Scientific Reports 5: 8688. PMI:

Zhou X, Zhao X, Xue C, Dai Y, Xu JR (2014) Bypassing both surface attachment and surface recognition requirements for appressorium formation by overactive ras signaling in Magnaporthe oryzae. Mol Plant Microbe Interact 27: 996-1004. PMI: 24835254

Liu TB, Xue C (2014) Fbp1-mediated ubiquitin-proteasome pathway controls Cryptococcus neoformans virulence by regulating fungal intracellular growth in macrophages. Infect Immun 82: 557-568. PMI: 24478071

Liu TB, Subbian S, Pan W, Eugenin E, Xie J, Xue C (2014) Cryptococcus inositol utilization modulates the host protective immune response during brain infection. Cell Commun Signal 12: 51. PMI: 25201772

Liu TB, Wang Y, Baker GM, Fahmy H, Jiang L, Xue C (2013) The glucose sensor-like protein Hxs1 is a high-affinity glucose transporter and required for virulence in Cryptococcus neoformans. PLoS ONE 8: e64239. PMI:

Liu TB, Kim JC, Wang Y, Toffaletti DL, Eugenin E, Perfect JR, Kim KJ, Xue C (2013) Brain inositol is a novel stimulator for promoting Cryptococcus penetration of the blood-brain barrier. PLoS Pathog 9: e1003247. PMI: 23592982

Xue C (2012) Cryptococcus and beyond - Inositol utilization and its implications for the emergence of fungal virulence. . PLoS Pathogens 8: e1002869. PMI:

Magditch DA, Liu, T.B., Xue, C., and Idnurm, A (2012) DNA mutations mediate microevolution between host-adapted forms of the pathogenic fungus Cryptococcus neoformans. PLoS Pathogens 8: e1002936. PMI:

Liu TB, Perlin DS, Xue C (2012) Molecular mechanisms of cryptococcal meningitis. Virulence 3: 173-181. PMI: 22460646

Zhang H, Xue C, Kong L, Li G, Xu JR (2011) A Pmk1-interacting gene is involved in appressorium differentiation and plant infection in Magnaporthe oryzae. Eukaryot Cell 10: 1062-1070. PMI: 21642506

Wang Y, Liu TB, Patel S, Jiang L, Xue C (2011) The casein kinase I protein Cck1 regulates multiple signaling pathways and is essential for cell integrity and fungal virulence in Cryptococcus neoformans. Eukaryot Cell 10: 1455-1464. PMI: 21926330

Wang Y, Liu TB, Delmas G, Park S, Perlin D, Xue C (2011) Two major inositol transporters and their role in cryptococcal virulence. Eukaryot Cell 10: 618-628. PMI: 21398509

Okagaki LH, Wang Y, Ballou ER, O'Meara TR, Bahn YS, Alspaugh JA, Xue C, Nielsen K (2011) Cryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli. Eukaryot Cell 10: 1306-1316. PMI: 21821718

Liu TB, Wang Y, Stukes S, Chen Q, Casadevall A, Xue C (2011) The F-Box protein Fbp1 regulates sexual reproduction and virulence in Cryptococcus neoformans. Eukaryot Cell 10: 791-802. PMI: 21478432

Liu T, Xue C (2011) The ubiquitin-proteasome system and F-box proteins in pathogenic fungi. Mycobiology 39: 243-248. PMI: 0

Alspaugh JA, Nichols CB, Xue C, Shen W, Wang G (2011) G-protein signaling pathways regulating morphogenesis and virulence of Cryptococcus. In Heitman J, Kozel T, Kwon-Chung J, Perfect J, and Casadevall A (eds.), Cryptococcus. ASM press, Washington D.C, pp. 153-165.

Xue C, Wang Y, Hsueh YP (2010) Assessment of constitutive activity of a G protein-coupled receptor, CPR2, in Cryptococcus neoformans by heterologous and homologous methods. Methods Enzymol 484: 397-412. PMI: 21036243

Xue C, Liu T, Chen L, Li W, Liu I, Kronstad JW, Seyfang A, Heitman J (2010) Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. MBio 1. PMI: 20689743

Lin X, Jackson JC, Feretzaki M, Xue C, Heitman J (2010) Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet 6: e1000953. PMI: 20485569

Xue C, Ebbole D, Heitman J (2009) Carbon and amino acid sensing. In Borkovich K, Ebbole D, and M. M (eds.), Cellular and Molecular Biology of Filamentous Fungi. ASM Press, Washington, DC, pp. 469-479.

Hsueh YP, Xue C, Heitman J (2009) A constitutively active GPCR governs morphogenic transitions in Cryptococcus neoformans. EMBO J 28: 1220-1233. PMI: 19322200

Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32: 1010-1032. PMI: 18811658

Xue C, Hsueh YP, Chen L, Heitman J (2008) The RGS protein Crg2 regulates both pheromone and cAMP signalling in Cryptococcus neoformans. Mol Microbiol 70: 379-395. PMI: 18761692

Xue C, Tada Y, Dong X, Heitman J (2007) The human fungal pathogen Cryptococcus can complete its sexual cycle during a pathogenic association with plants. Cell Host Microbe 1: 263-273. PMI: 18005707

Hsueh YP, Xue C, Heitman J (2007) G protein signaling governing cell fate decisions involves opposing Galpha subunits in Cryptococcus neoformans. Mol Biol Cell 18: 3237-3249. PMI: 17581859

Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5: 57-69. PMI: 17170747

Xue C, Bahn YS, Cox GM, Heitman J (2006) G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 17: 667-679. PMI: 16291861

Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18: 2822-2835. PMI: 17056708


Microbiology, Zhejiang University, China 2000-PhD

Postdoctoral studies, Fungal Biology, Purdue University 2000-2004

Postdoctoral studies, Medical Mycology, Duke University 2004-2008

     Copyright © 2018 All rights reserved.   PHRI at ICPH 225 Warren St. Newark, NJ 07103-3535 TEL 973 854 3100, FAX 973 854 3101